skip to main content


Search for: All records

Creators/Authors contains: "Wu, Kui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a height-field-based real-time simulation method for sand and water mixtures. Inspired by the shallow-water assumption, our approach extends the governing equations to handle two-phase flows of sand and water using height fields. Our depth-integrated governing equations can model the elastoplastic behavior of sand, as well as sand-water-mixing phenomena such as friction, diffusion, saturation, and momentum exchange. We further propose an operator-splitting time integrator that is both GPU-friendly and stable under moderate time step sizes. We have evaluated our method on a set of benchmark scenarios involving large bodies of heterogeneous materials, where our GPU-based algorithm runs at real-time frame rates. Our method achieves a desirable trade-off between fidelity and performance, bringing an unprecedentedly immersive experience for real-time applications. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Lagrangian/Eulerian hybrid strand-based hair simulation techniques have quickly become a popular approach in VFX and real-time graphics applications. With Lagrangian hair dynamics, the inter-hair contacts are resolved in the Eulerian grid using the continuum method, i.e., the MPM scheme with the granular Drucker-Prager rheology, to avoid expensive collision detection and handling. This fuzzy collision handling makes the authoring process significantly easier. However, although current hair grooming tools provide a wide range of strand-based modeling tools for this simulation approach, the crucial sag-free initialization functionality remains often ignored. Thus, when the simulation starts, gravity would cause any artistic hairstyle to sag and deform into unintended and undesirable shapes. This paper proposes a novel four-stage sag-free initialization framework to solve stable quasistatic configurations for hybrid strand-based hair dynamic systems. These four stages are split into two global-local pairs. The first one ensures static equilibrium at every Eulerian grid node with additional inequality constraints to prevent stress from exiting the yielding surface. We then derive several associated closed-form solutions in the local stage to compute segment rest lengths, orientations, and particle deformation gradients in parallel. The second global-local step solves along each hair strand to ensure all the bend and twist constraints produce zero net torque on every hair segment, followed by a local step to adjust the rest Darboux vectors to a unit quaternion. We also introduce an essential modification for the Darboux vector to eliminate the ambiguity of the Cosserat rod rest pose in both initialization and simulation. We evaluate our method on a wide range of hairstyles, and our approach can only take a few seconds to minutes to get the rest quasistatic configurations for hundreds of hair strands. Our results show that our method successfully prevents sagging and has minimal impact on the hair motion during simulation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Noncentrosymmetric (NCS) silicon phosphides have recently shown promise as nonlinear optical materials due to the balance of strong second harmonic generation (SHG) activity and large laser damage threshold (LDT) values. While arsenides of electropositive metals, such as Ba, Mg, Zn, and Cd were explored, no NLO properties for transition metal tetrel arsenides have yet been reported. IrSi 3 As 3 is a novel compound, isostructural to IrSi 3 P 3 , which allows a direct investigation on the impact of the heavier pnictogen on structural and optical properties. The direct bandgap is reduced from 1.8 eV for IrSi 3 P 3 to 1.55 eV for IrSi 3 As 3 . Unlike many NLO chalcogenides, IrSi 3 As 3 has a small bandgap without compromising the balance between SHG signal and high LDT values. IrSi 3 As 3 was found to outperform both its phosphide analogue IrSi 3 P 3 , as well as the state-of-the-art infrared SHG standard AgGaS 2 (AGS) in SHG activity and the LDT. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  5. Fluidic devices are crucial components in many industrial applications involving fluid mechanics. Computational design of a high-performance fluidic system faces multifaceted challenges regarding its geometric representation and physical accuracy. We present a novel topology optimization method to design fluidic devices in a Stokes flow context. Our approach is featured by its capability in accommodating a broad spectrum of boundary conditions at the solid-fluid interface. Our key contribution is an anisotropic and differentiable constitutive model that unifies the representation of different phases and boundary conditions in a Stokes model, enabling a topology optimization method that can synthesize novel structures with accurate boundary conditions from a background grid discretization. We demonstrate the efficacy of our approach by conducting several fluidic system design tasks with over four million design parameters. 
    more » « less
  6. Initializing simulations of deformable objects involves setting the rest state of all internal forces at the rest shape of the object. However, often times the rest shape is not explicitly provided. In its absence, it is common to initialize by treating the given initial shape as the rest shape. This leads to sagging, the undesirable deformation under gravity as soon as the simulation begins. Prior solutions to sagging are limited to specific simulation systems and material models, most of them cannot handle frictional contact, and they require solving expensive global nonlinear optimization problems. We introduce a novel solution to the sagging problem that can be applied to a variety of simulation systems and materials. The key feature of our approach is that we avoid solving a global nonlinear optimization problem by performing the initialization in two stages. First, we use a global linear optimization for static equilibrium. Any nonlinearity of the material definition is handled in the local stage, which solves many small local problems efficiently and in parallel. Notably, our method can properly handle frictional contact orders of magnitude faster than prior work. We show that our approach can be applied to various simulation systems by presenting examples with mass-spring systems, cloth simulations, the finite element method, the material point method, and position-based dynamics. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. Bond-breaking bio-orthogonal chemistry, consisting of a “click” reaction between trans-cyclooctene and tetrazine, followed by an intramolecular cyclization-driven uncaging step is described. The two-step process allows activation of caged compounds in biological media at neutral pH. The feasibility of this chemistry has been illustrated using NMR, while kinetics and pH-dependence were studied by fluorescence spectroscopy using caged coumarin. The practicality of the strategy is illustrated by activation of an anticancer drug, etoposide. 
    more » « less